US009152442B2

a2z United States Patent (10) Patent No.: US 9,152,442 B2
Schneider (45) Date of Patent: Oct. 6, 2015
(54) CALLBACKS IN VIRTUAL MACHINES (56) References Cited
(75) Inventor: James P. Schneider, Raleigh, NC (US) U.S. PATENT DOCUMENTS
. . 6,934,945 B1* 8/2005 Ogilvy ..ccooeovvvvviriiicinne 718/1
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 7,565,279 B2* 7/2009 BOIdes ..ocooccrcorrererererne 703/17
7,996,826 B2* 8/2011 Park et al. 717/148
(*) Notice: Subject to any disclaimer, the term of this 2009%01357’5847‘ izlz 1(7);38(1); Sere‘gqn O 712/1381/55
. . ereorin etal. ...
paterlt 18 eXtended or adJuSted under 35 2009/0204962 Al * 8/2009 Dla.Z et al """"""""""""" 718/1
U.S.C. 154(b) by 1824 days. 2010/0138815 Al 6/2010 Schneider
(21) Appl. No.: 12/202,205 * cited by examiner
_ Primary Examiner — Gregory A Kessler
(22) Filed: Aug. 29,2008 (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(65) Prior Publication Data (57) ABSTRACT
US 2010/0058338 Al Mar. 4, 2010 The use of callback functions when executing intermediate
instructions in a virtual machine is described. The virtual
(51) Int.CL machine receives and evaluates intermediate instructions.
GOGF 9/455 (2006.01) The virtual machine evaluates the instructions based on a
GOGF 9/44 (2006.01) function table referencing definitions of the functions. A call-
GO6F 9/54 (2006.01) back is loaded into the virtual machine platform, and a call-
’ back loader modifies the function table to cause a function in
(52) US.CL the table to point to the callback instead of the standard
CPC . GO6F 9/45533 (2013.01); GOGF 9/4426 definition. Thus, when the intermediate code is evaluated, it is
(2013.01); GOGF 9/547 (2013.01) evaluated based on the modified functionality of the callback
(58) Field of Classification Search rather than the standard definition.

None
See application file for complete search history.

22 Claims, 6 Drawing Sheets

LOAD PROGRAM SOURCE CODE 502

'

COMPILE SOURCE CODE INTO BYTE CODE
(INTERMEDIATE CODE) 504

v

INITIALIZE VIRTUAL MACHINE PLATFORM 506

'

GENERATE VM IN VM PLATFORM 50

; 508

LOAD PROGRAM BYTE CODE INTO VM 510

v

LOAD CALLBACK CODE 512

v

REGISTER CALLBACK 51

: 514

MODIFY VM FUNCTION TABLE TO POINT
PROGRAM FUNCTION TO CALLBACK 516

v

EVALUATE BYTE CODE WITH MODIFIED
FUNCTION TABLE, REFERENCING CALLBACK 518

U.S. Patent Oct. 6, 2015 Sheet 1 of 6 US 9,152,442 B2

SOURCE CODE 102

COMPILER 104

~ =

BYTE CODE 106

VIRTUAL MACHINE 110

FUNCTION TABLE 120

BYTE CODE 106

FUNCTION
DEFINITION 11

FIG. 1
(PRIOR ART)

U.S. Patent Oct. 6, 2015 Sheet 2 of 6 US 9,152,442 B2

200
MEMORY 210
VM PLATFORM 220
VIRTUAL MACHINE VIRTUAL MACHINE
230 240 0S 212
—— |
BYTE I BYTE |
CODE | 1 CODE |
232 N\ ' 242 I COMPILER 214
b I l
N
A}
N
\\
3| CALLBACK CALLBACK
244 LOADER 216
OS/HARDWARE INTERFACES 222
SOURCE CODE 218

FIG. 2

'
]
REF 334 '

U.S. Patent Oct. 6, 2015 Sheet 3 of 6 US 9,152,442 B2
300
MEMORY 310
VIRTUAL MACHINE 320

ByTECODE322 | | i

...... I CALLBACK 332 ' |

]

N !

iadd L UM CONTEXT ' !

]

]

]

2.
325 *3. iadd

4. ...

INITIALIZER 326

EVALUATOR 328

VM CALLBACK LOADER 33

N CcALLBACK 332

SN

. TABLE
MODIFIER 336

FIG. 3

U.S. Patent

Oct. 6, 2015

Sheet 4 of 6

SOURCE CODE 402

COMPILER 404

~ =

BYTE CODE 406

US 9,152,442 B2

VIRTUAL MACHINE 410

BYTE CODE 406

|-l>
—
~

FUNCTION TABLE 420

m /"ll
y

FUNCTION
DEFINITION 424

418

CALLBACK 430

VM CONTEXT

REF 432

FIG. 4

U.S. Patent

Oct. 6, 2015 Sheet 5 of 6

LOAD PROGRAM SOURCE CODE 502

v

COMPILE SOURCE CODE INTO BYTE CODE
(INTERMEDIATE CODE) 504

v

INITIALIZE VIRTUAL MACHINE PLATFORM 506

v

GENERATE VM IN VM PLATFORM 508

v

LOAD PROGRAM BYTE CODE INTO VM 510

v

LOAD CALLBACK CODE 512

v

REGISTER CALLBACK 514

v

MODIFY VM FUNCTION TABLE TO POINT
PROGRAM FUNCTION TO CALLBACK 516

v

EVALUATE BYTE CODE WITH MODIFIED

FUNCTION TABLE, REFERENCING CALLBACK 518

FIG. 5

US 9,152,442 B2

U.S. Patent Oct. 6, 2015 Sheet 6 of 6 US 9,152,442 B2

600
<>
PROCESSOR 602
VIDEO DISPLAY
INSTRUCTIONS | [¢———> [¢—> 610
626 —
MAIN MEMORY 604
ALPHA-NUMERIC
NsTRucTons | fe——» |[——| iNPUTDEVICE
626 612
STATIC MEMORY CURSOR CONTROL
606
B 608 b14
uf
S
DRIVE UNIT 616
NETWORK INTERFACE
DEVICE >
622 COMPUTER READABLE
| .| [MEDIUM 624
INSTRUCTIONS
626
SIGNAL GENERATION
> DEVIGE
620
v

FIG. 6

US 9,152,442 B2

1
CALLBACKS IN VIRTUAL MACHINES

FIELD

The invention is generally related to executing programs in
a virtual machine, and more particularly to implementing
callbacks for program execution in a virtual machine.

COPYRIGHT NOTICE/PERMISSION

At least a portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the reproduction by
anyone of the patent document or the patent disclosure as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever. The copyright notice applies to all data as described
below, and in the accompanying drawings hereto, as well as to
any software described below: Copyright© 2008, Red Hat,
Inc., All Rights Reserved.

BACKGROUND

Many programming languages allow development of pro-
grams or applications that will be implemented in a virtual
machine. The virtual machine is designed to allow “platform-
independent” development. The basic principle of a virtual
machine environment is that the executable code exists as
“intermediate state,” or intermediate form, code, or code in a
state that still will be evaluated or interpreted by a virtual
machine layer to essentially translate the program code into
instructions executable on a hardware and operating system
environment of the computing device on which the virtual
machine executes. JAVA (of SUN MICROSYSTEMS of
Sunnyvale, Calif.) is a well-known example. PERL (of the
PERL FOUNDATION) is an example of a programming
language that uses an intermediate state of code. Note that all
trademarks used herein are used solely for purposes of iden-
tification of a source of a product. All trademarks are the
property of their respective owners.

Programming languages that do not use a virtual machine
layer or intermediate state code are implemented with a com-
piler that converts human-readable code written in the pro-
gramming language into machine-executable code made up
of instructions within an instruction set supported by a par-
ticular hardware and operating system environment, also
referred to as a platform. Accordingly, such programming
languages require, for each platform on which a program
written in the program language is to be executed, separate
compilers and separate compiling of human-readable code.

Virtual machines allow development of what is frequently
referred to as “portable” code, or a “platform-independent”
implementation. Platform-independent implementations
allow human-readable code to be converted into a single
format for execution on multiple platforms with a single
compiler. The single compiler converts the human-readable
code into an intermediate form, rather than into machine-
executable instructions. The intermediate form is made up of
a platform-independent instruction set, which instruction set
is supported by the virtual machine. The virtual machine is
effectively a virtual platform or architecture supporting the
instruction set that makes up the intermediate form.

The virtual machine in turn is implemented on various
platforms, where each implementation of the virtual machine
is capable of executing the intermediate code. In this way, the
intermediate code is platform independent, and execution of
the intermediate code on a computing system is limited only

10

20

40

45

2

by the existence of a virtual machine environment for a given
platform. Thus, when a virtual machine is implemented for a
given platform, that platform becomes automatically capable
of executing all programs compiled into the intermediate
form, without having to re-compile the human-readable, or
source, code.

An example of a programming language that uses a virtual
machine layer is JAVA. FIG. 1 illustrates an exemplary imple-
mentation of known virtual machines. Human-readable code,
or source code 102 is processed by compiler 104, which
converts source code 102 into an intermediate form, as shown
by byte code 106. The compiling of source code 102 into byte
code 106 is understood to take place at “design time,” refer-
ring to some time before execution of the program.

At runtime, or a time or times when byte code 106 is
executed by virtual machine 110, the individual instructions
making up byte code 106 are evaluated within virtual
machine 110 by reference to function table 120. Function
table 120 stores, for each function, a reference to machine-
executable function definition, such as 116. Thus, intermedi-
ate instruction 112 is evaluated as reference 114 to entry 122
in function table 120. Entry 122 in turn is evaluated as refer-
ence 124 to function definition 116.

While a virtual machine layer in the implementation of a
programming language creates a great deal of flexibility, it
does not provide all the flexibility that developers might
desire. When a platform introduces new capabilities, a devel-
oper must wait until the virtual machine implementation for
the platform is updated to use those capabilities if he wishes
to gain their benefit. For example, if a given platform adds
new instructions to support 64-bit arithmetic, but the virtual
machine implementation of that platform remains limited to
instructions for 32-bit arithmetic, a developer cannot use the
new 64-bit instructions on that implementation. Also, there
exists a great deal of “legacy” code for legacy programs that
may have been developed in the past. While the executable or
intermediate form of the code for the legacy programs may
exist, sometimes the source code is not available. Thus, for
legacy programs, it may not be possible in traditional systems
to change the program in the virtual machine.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description includes discussion of figures
having illustrations given by way of example of implementa-
tions of embodiments of the invention. The drawings should
be understood by way of example, and not by way of limita-
tion.

FIG. 1 is ablock diagram of exemplary prior art system for
generating intermediate instructions and executing the inter-
mediate instructions on a virtual machine.

FIG. 2 is a block diagram of an embodiment of a system
having a virtual machine platform with a virtual machine
modified by a callback.

FIG. 3 is a block diagram of an embodiment of a system
having a virtual machine that is initialized to include a call-
back.

FIG. 4 is a block diagram of an embodiment of a represen-
tation of generating intermediate code, and a virtual machine
that implements a callback.

FIG. 5 is a flow diagram of an embodiment of a method for
initializing a virtual machine with callbacks and executing
intermediate instructions on the virtual machine using the
callbacks.

US 9,152,442 B2

3

FIG. 6 is a block diagram of a computing device on which
embodiments of the invention may be implemented.

DETAILED DESCRIPTION

The use of callbacks in a virtual machine are described. A
callback is loaded that has modified functionality as com-
pared to a function of the virtual machine. A function table
that references the function of the virtual machine is modified
to reference the callback. Thus, during execution of a pro-
gram in the virtual machine, an alternate definition for the
selected function is used. The use of callbacks can thus enable
modifications to legacy programs, even when the source code
is unavailable.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “sending”, “receiving”, “comparing”, “hashing”, “main-
taining”, or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmission or dis-
play devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general-purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer-
readable storage medium, such as, but not limited to, any type
of disk including floppy disks, optical disks, CDROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general-purpose systems may be used with programs

10

15

20

25

30

35

40

45

50

55

60

65

4

in accordance with the teachings herein. Also, it may be
convenient to construct a more specialized apparatus to per-
form the required operations of the method. Structure for a
variety of these systems will appear as set forth in the descrip-
tion below. In addition, the present invention is not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as
described herein.

In general, the embodiments described below enable the
use of callbacks within a virtual machine, where the callbacks
are external to the virtual machine. The use of such callbacks
is facilitated by modifying the references in the primitive
table used by the virtual machine, such that selected refer-
ences are redirected to the external callback function defini-
tion.

Enabling the use of callbacks adds additional flexibility to
programming languages implemented with a framework
where source code is compiled into an intermediate form that
is evaluated at runtime by means of a virtual machine. Call-
backs are programming mechanisms used in other program-
ming language to, for example, pass a function as an argu-
ment to another function. Callbacks generally allow the
passing of executable code to another piece of code. Call-
backs are typically implemented as code external to a particu-
lar software environment that has a program that calls the
callback. As described herein, a callback is implemented in a
virtual machine to modify operation of a function within the
virtual machine.

As mentioned above, such an implementation of a callback
in a virtual machine may be useful, for example, in a situation
where a developer has access to the intermediate code, but not
the original source code, either because the original source
code has been lost, or is in the hands of a third party that may
have provided the developer with only the intermediate
instructions. The use of callbacks in the virtual machine can
enable updating or modifying the execution of certain func-
tionality, without necessitating rewriting of the whole system.

Another situation in which callbacks in a virtual machine
may be helpful is in taking advantage of updates to a platform
that have not yet been incorporated into the implementation
of a virtual machine for that platform. For example, a plat-
form that previously supported only 32-bit arithmetic might
add support for 64-bit arithmetic, by adding new machine
instructions to the supported instruction set for that platform.
The use of callbacks to redirect definitions for arithmetic
primitives to use the new 64-bit machine instructions instead
of the old 32-bit machine instructions allows a developer to
quickly and conveniently use the platform advance, without
having to implement an updated virtual machine.

In one embodiment, the reference table is modified in
response to an operation of the virtual machine. Thus, the
virtual machine can perform an operation that causes the
callback loader to load a particular callback. In one embodi-
ment, the operation of the virtual machine causes an excep-
tion, and modifying the reference table is part of handling the
exception. Enabling the callback in response to an exception
can allow the virtual machine to perform operations that
would otherwise be outside the operation of the virtual
machine.

In one embodiment, the callback causes the virtual
machine to evaluate or execute certain intermediate instruc-
tions, or certain operations of the program. The intermediate
instructions can be identified in the callback by reference to
functions, calls, methods, or address space. Thus, some
amount of intermediate instructions can be evaluated by
operation of the callback. It will be understood that the pro-

US 9,152,442 B2

5

gram operations would be operations that may not normally
be called to perform a certain function. Thus, a certain func-
tion can be executed, which points to a particular entry in the
reference table, which references the callback. The callback
can then cause other parts of the program to be executed by
causing the virtual machine to evaluate certain intermediate
instructions.

The following figures are described with reference to block
diagrams and explanations as it might relate, for example, to
the JAVA programming language. However, the descriptions
and figures should be understood merely as examples, and are
not limiting. One of skill in the art could understand to apply
what is described herein to implement callbacks in an inter-
mediate form of code in other programming languages, such
as PERL. Thus, the teachings herein may be applied to any of
a number of programming languages utilizing an intermedi-
ate form of code that that is evaluated at runtime by a virtual
machine or a functional equivalent thereof.

FIG. 2 is a block diagram of an embodiment of a system
having a virtual machine platform with a virtual machine
modified by a callback. System 200 may be any type of
computing device or computing system or platform on which
avirtual machine may be implemented. System 200 includes
memory 210, or a storage device which can be, for example,
main memory in a computer system. Memory 210 stores
instructions that are executed by a processor (not shown) of
the system.

Memory 210 includes OS (operating system) 212, which
represents a software platform on which programs in system
200 execute. Programs in system 200 will generally be stored
in and executed from memory 210. Memory 210 also
includes compiler 214, which represents a program that gen-
erates intermediate code from source code 218. Source code
218 represents any type of source code that may be loaded
onto system 200, or generated/developed on system 200.
Specifically for purposes of discussion here, source code 218
may be understood as code developed for a programming
language that utilizes intermediate code. Compiler 214 pro-
cesses the human-readable instructions of source code 218
into intermediate, virtual-machine readable instructions. The
intermediate instructions or code that is evaluated and
executed on the virtual machines is illustrated by byte code
232 and byte code 234.

Callback loader 216 in memory 210 represents a module or
aprogram that enables the loading of a callback into a virtual
machine. Briefly, callback loader 216 loads the callback into
memory, and causes the intermediate code to reference the
callback. Thus, the callback is used for different functionality
than a function within the virtual machine. The different
functionality may be different functions as defined in the
callback and/or the calling of portions of the intermediate
code. In one embodiment, callback loader 216 is called in
response to an operation of the virtual machine. Thus, the
virtual machine may have logic or a function module that can
call callback loader 216 to initiate the modification of a cer-
tain function. In one embodiment, the virtual machine could
switch back to the unmodified functionality as well. Thus, the
callback can be activated and deactivated to provide the func-
tionality in the virtual machine.

Memory 210 includes VM (virtual machine) platform 220,
which represents an engine or runtime environment on which
virtual machines will execute. VM platform 220 enables
execution of the intermediate code as referred to above and
evaluates the code and implements executable machine code
that the underlying hardware/software platform of system
200 can execute. VM platform 220 includes OS/hardware
interfaces 222, which is an abstraction to generically repre-

10

20

25

30

35

40

45

50

55

60

65

6

sent mechanisms within the virtual machine environment to
cause operations to be executed in OS 212, hardware of
system 200, or another program executing on system 200 (not
shown).

VM platform 220 is illustrated with two virtual machines,
230 and 240. Virtual machine 230 includes byte code 232,
which represents the program or code that will be executed in
virtual machine 230. Virtual machine 240 is illustrated with
byte code 242 and callback 244. In one embodiment, byte
code 242 represents a program to be executed in virtual
machine 240, and callback 244 includes code that modifies
functionality of byte code 242. Thus, callback 244 may be
loaded and implemented on the same virtual machine as the
program it modifies. Callback 244 may additionally or alter-
natively modify functionality in byte code 232 of virtual
machine 230. In such a scenario, virtual machine 240 may be
a second instance of virtual machine 230, or otherwise share
configuration. In an implementation where callback 244
modifies byte code 232, byte code 242 may or may not be
present in virtual machine 240. Thus, virtual machine 240
may simply be a container for callback 244. In any of these
scenarios, callback 244 includes functional definitions that
are different than would otherwise be implemented when
evaluating the modified byte code on VM platform 220.

FIG. 3 is a block diagram of an embodiment of a system
having a virtual machine that is initialized to include a call-
back. System 300 may be any type of computing device or
computing system or platform on which a virtual machine
may be implemented. System 300 includes memory 310,
which can be, for example, main memory in a computer
system. Memory 310 stores instructions that are executed by
a processor (not shown) of the system.

Memory 310 includes virtual machine 320, which executes
a program represented by byte code 322. Byte code 322
includes intermediate instructions that will be evaluated by
virtual machine 320 (on a virtual machine platform, not
shown), and executed in system 300. Virtual machine 320
also includes function table 324, which includes various func-
tions that may be called within byte code 322. In one embodi-
ment, function table 324 is initialized to only include primi-
tive functions, such as function 325, ‘iadd’. Each function
listed in function table 324 references a definition of the
function within virtual machine 320.

Initializer 326 initializes virtual machine 320, which may
include setting configuration values, initializing platform
interfaces, etc. As part of the initialization, initializer 326 may
make a function call to VM callback loader 330. VM callback
loader 330 may be a standard function available within the
programming language environment (such as an external call
function built into PERL), or may be a module to enable
loading callbacks into the virtual machine environment.

VM callback loader 330 includes callback 332 and table
modifier 336. Callback 332 includes the code to implement
the modified functionality within virtual machine 320. The
modified functionality can include function definitions in the
callback, as well as, or alternatively, intermediate instructions
in the virtual machine. VM callback loader 330 stores or loads
callback 332 into memory 310. The callback may be loaded
into virtual machine 320, or a different virtual machine or
other location in the virtual machine platform. Table modifier
326 represents code that modifies function table 324. Specifi-
cally, function 325 is changed to reference or point to callback
332 where it is loaded into the virtual machine platform. In
one embodiment, VM callback loader 330 passes (for
example, by table modifier 336) VM context reference (ref)
334 in callback 332. Initializer 326 may pass a VM context of
virtual machine 320 to table modifier 336, which table modi-

US 9,152,442 B2

7

fier 336 can then use to access and modify function table 324.
Table modifier 336 can then also store the reference to the
context in callback 332.

Virtual machine 320 includes evaluator 328, which evalu-
ates byte code 322 at runtime to execute a program. Evaluator
328 will use callback 332 in place of function 325 in evalu-
ating the intermediate instructions, effectively changing the
functionality of the program in virtual machine 320.

FIG. 4 is a block diagram of an embodiment of a represen-
tation of generating intermediate code and a virtual machine
that implements a callback. Source code 402 is converted into
intermediate form, byte code 406, by compiler 410. Such
operation is either similar or the same as is known in the art.
Virtual machine 410 is to evaluate and cause byte code 406 to
execute. Byte code 406 includes instruction 412, which ref-
erences a corresponding instruction in function table 420,
with reference 414. In unmodified operation, entry 422 rep-
resenting the corresponding instruction, makes reference 416
to function definition 424. However, in virtual machine 410,
function definition 424 is redirected to modified functionality
provided by callback 430. Thus, entry 422 no longer refer-
ences function definition 424 within virtual machine 410, but
instead has reference 418 to callback 430. Note that reference
to the callback should persist as long as the virtual machine is
operational. Thus, modification of byte code 406 in virtual
machine 410 by callback 430 should be effective to modify
the functionality for the entire time the program executes. The
loading of the program can be modified to load callback 430
every time the program is loaded, which would be effective to
modify every implementation of the program. Thus callback
430 could modify all operation of the program in virtual
machine 410 with respect to the function represented at entry
422.

Callback 430 includes VM context reference 432, which is
a reference to the context of virtual machine 410. Alterna-
tively, or additionally, one or more arguments used to call
callback 430 could pass context values. The context refer-
enced by VM context reference 432 represents state and vari-
able information of virtual machine 410. Access to state and
variable information allows callback 430 to both return
execution to the virtual machine, and to perform operations
that have effect within the virtual machine.

FIG. 5 is a flow diagram of an embodiment of a method for
initializing a virtual machine with callbacks and executing
intermediate instructions on the virtual machine using the
callbacks. The method or process may be performed by pro-
cessing logic that may include hardware (e.g., circuitry, pro-
grammable logic, microcode, etc.), software (such as instruc-
tions run on a processing device), or a combination thereof.
For convenience, reference is made to components that might
perform one or more of the operations described below. Ref-
erence to particular components may not necessarily be
exclusive, and other components not specifically called out
may perform one or more of the following operations.

A compiler (e.g., compiler 224) loads program source code
502. The source code is represented as human-readable
instructions. The compiler compiles the source code into byte
code, or intermediate code, 504. The intermediate code is
evaluated on a virtual machine. The source code represents a
program for execution on a computing device, and the inter-
mediate code is another form to represent the program. When
the program is to be executed, a computing device on which
the program is to execute (e.g., system 200) automatically
loads a virtual machine platform, as is understood in the art.
The virtual machine platform initializes itself, 506, and gen-
erates a virtual machine (VM) in the platform, 508. The
virtual machine is also initialized.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

A program loader on the computer device loads the pro-
gram byte code into the virtual machine, 510. Initialization of
the virtual machine may also include the loading of callback
code, 512, as described herein. In one embodiment, the call-
back is registered, 514. The callback will be registered with
the virtual machine or virtual machines whose functionality
will be modified by the callback. The loading of the program
may call a function or method that will dynamically register
the callback. Registering the callback generically refers to
configuring the virtual machine to recognize the callback.

A callback loader (e.g., 330) loads the callback and may
pass VM context to the callback. The callback loader modifies
function table in the affected virtual machine(s) to point a
program function to the callback, 516. The virtual machine
then evaluates the byte code with the modified function table,
making reference to the callback, 518. The modifications to
the function table should persist for the duration of the pro-
gram and be limited to the virtual machine context. Thus,
other instances of the program could be implemented,
unmodified, in another virtual machine. Other programs may
use the same callback, but would also need to load the call-
back by a separate initialization process to modify the virtual
machine in which they are executed. Seeing the callback will
be limited to the context in which it is loaded.

FIG. 6 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 600
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a Local Area Network (LAN), an intranet, an
extranet, or the Internet. The machine may operate in the
capacity of a server or a client machine in a client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a server, a network router, switch or bridge, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specitfy actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines (e.g., computers) that individually or jointly
execute a set (or multiple sets) of instructions to perform any
one or more of the methodologies discussed herein.

The exemplary computer system 600 includes a processor
602, a main memory 604 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
such as synchronous DRAM (SDRAM) or Rambus DRAM
(RDRAM), etc.), a static memory 606 (e.g., flash memory,
static random access memory (SRAM), etc.), and a secondary
memory 618 (e.g., a data storage device), which communi-
cate with each other via a bus 608.

Processor 602 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 602 may be
a complex instruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, proces-
sor implementing other instruction sets, or processors imple-
menting a combination of instruction sets. Processor 602 may
also be one or more special-purpose processing devices such
as an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. Processor 602 is con-
figured to execute the processing logic 626 for performing the
operations and steps discussed herein.

US 9,152,442 B2

9

The computer system 600 may further include a network
interface device 608. The computer system 600 also may
include a video display unit 610 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 612 (e.g., a keyboard), a cursor control device 614
(e.g., a mouse), and a signal generation device 616 (e.g., a
speaker).

The secondary memory 618 may include a machine-read-
able storage medium (or more specifically a computer-read-
able storage medium) 624 on which is stored one or more sets
of instructions (e.g., software 622) embodying any one or
more of the methodologies or functions described herein. The
software 622 may also reside, completely or at least partially,
within the main memory 604 and/or within the processing
device 602 during execution thereof by the computer system
600, the main memory 604 and the processing device 602 also
constituting machine-readable storage media. The software
622 may further be transmitted or received over a network
620 via the network interface device 608.

While the machine-readable storage medium 624 is shown
in an exemplary embodiment to be a single medium, the term
“machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable storage medium” shall also be taken to
include any medium that is capable of storing or encoding a
set of instructions for execution by the machine and that cause
the machine to perform any one or more of the methodologies
of'the present invention. The term “machine-readable storage
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

Various operations or functions are described herein,
which may be described or defined as software code, instruc-
tions, configuration, and/or data. The content may be directly
executable (“object” or “executable” form), source code, or
difference code (“delta” or “patch” code). The software con-
tent of the embodiments described herein may be provided
via an article of manufacture with the content stored thereon,
or via a method of operating a communication interface to
send data via the communication interface. A machine- or
computer-readable storage medium may cause a machine to
perform the functions or operations described, and includes
any mechanism that stores information in a form accessible
by a machine (e.g., computing device, electronic system,
etc.), such as recordable/non-recordable media (e.g., read
only memory (ROM), random access memory (RAM), mag-
netic disk storage media, optical storage media, flash memory
devices, etc.). A communication interface includes any
mechanism that interfaces to any of a hardwired, wireless,
optical, etc., medium to communicate to another device, such
as a memory bus interface, a processor bus interface, an
Internet connection, a disk controller, etc. The communica-
tion interface can be configured by providing configuration
parameters and/or sending signals to prepare the communi-
cation interface to provide a data signal describing the soft-
ware content. The communication interface can be accessed
via one or more commands or signals sent to the communi-
cation interface.

Various components described herein may be a means for
performing the operations or functions described. Each com-
ponent described herein includes software, hardware, or a
combination of these. The components can be implemented
as software modules, hardware modules, special-purpose
hardware (e.g., application specific hardware, application

10

15

20

25

30

35

40

45

50

55

60

65

10

specific integrated circuits (ASICs), digital signal processors
(DSPs), etc.), embedded controllers, hardwired circuitry, etc.

Besides what is described herein, various modifications
may be made to the disclosed embodiments and implemen-
tations of the invention without departing from their scope.
Therefore, the illustrations and examples herein should be
construed in an illustrative, and not a restrictive sense. The
scope of the invention should be measured solely by reference
to the claims that follow.

What is claimed is:

1. A method of executing intermediate instructions within
a virtual machine comprising:

passing, to the virtual machine, a reference to the interme-

diate instructions, wherein the intermediate instructions
represent human-readable instructions compiled into a
form evaluable by the virtual machine, and the virtual
machine evaluates the intermediate instructions by use
of a table having a reference, for each of a plurality of
functions, to machine-executable instructions imple-
menting the function;

before executing on the virtual machine, initializing, by a

processor, the virtual machine by modifying the table of
references to redirect a selected reference, associated
with a function, to a callback function to modify the
functionality of the function, wherein the table of refer-
ences is modified, at least in part, in view of a feature of
supporting hardware; and

evaluating the intermediate instructions at runtime in view

of the modified table of references, comprising passing
at least part of a context of the virtual machine to the
callback function.

2. The method of claim 1, wherein the table of references is
modified by machine-executable instructions external to the
virtual machine, wherein the external machine executable
instructions are invoked during initialization of the virtual
machine.

3. The method of claim 1, wherein the table of references is
modified in response to an operation of the virtual machine.

4. The method of claim 1, wherein the table of references is
modified to reference the callback function having instruc-
tions to cause the virtual machine to evaluate certain interme-
diate instructions identified in the callback.

5. The method of claim 1, wherein the table of references is
modified in view of customizable configuration data.

6. The method of claim 1, wherein the intermediate instruc-
tions are in the form of a syntax tree.

7. The method of claim 1, wherein the intermediate instruc-
tions are in the form of byte code.

8. The method of claim 1, wherein the function for which
the associated reference is modified is one of a method call, a
method return, a property read operation, a property write
operation, or an exception.

9. The method of claim 1, wherein the function is a primi-
tive function.

10. A non-transitory machine-readable storage medium
comprising instructions to cause a processor to:

pass, to a virtual machine, a reference to intermediate

instructions, wherein the intermediate instructions rep-
resent human-readable instructions compiled into a
form evaluable by the virtual machine, and the virtual
machine evaluates the intermediate instructions by use
of a table having a reference, for each of a plurality of
functions, to machine-executable instructions imple-
menting the function;

before executing on the virtual machine, initialize, by the

processor, the virtual machine by modifying the table of
references to redirect a selected reference, associated

US 9,152,442 B2

11

with a function, to a callback function to modify the
functionality of the function, wherein the table of refer-
ences is modified, at least in part, in view of a feature of
supporting hardware; and

evaluate the intermediate instructions at runtime in view of

the modified table of references, comprising passing at
least part of a context of the virtual machine to the
callback function.

11. The non-transitory machine-readable storage medium
of claim 10, wherein the table of references is modified by
machine-executable instructions external to the virtual
machine, wherein the external machine executable instruc-
tions are invoked during initialization of the virtual machine.

12. The non-transitory machine-readable storage medium
of claim 10, wherein the table of references is modified in
response to an operation of the virtual machine.

13. The non-transitory machine-readable storage medium
of claim 10, wherein the table of references is modified to
reference the callback function having instructions to cause
the virtual machine to evaluate certain intermediate instruc-
tions identified in the callback.

14. The non-transitory machine-readable storage medium
of claim 10, wherein the intermediate instructions are in the
form of a syntax tree or byte code.

15. The non-transitory machine-readable storage medium
of claim 10, wherein the function for which the associated
reference is modified is one of a method call, a method return,
a property read operation, a property write operation, or an
exception.

16. The non-transitory machine-readable storage medium
of claim 10, wherein the function is a primitive function.

17. A computing device comprising:

a data storage device to store a virtual machine, the virtual

machine to load intermediate instructions representing

10

15

20

25

30

12

human-readable instructions compiled into a form
executable by the virtual machine, the virtual machine
having a function table to use in evaluating the interme-
diate instructions, the function table referencing a primi-
tive function that comprises machine-executable
instructions to implement the function; and

a processor to execute a callback loader to load a callback

function in the data storage device, and before executing
on the virtual machine, initialize the virtual machine by
modifying the function table, at least in part, in view of
a feature of supporting hardware, to redirect the refer-
ence from the primitive function to the callback func-
tion, comprising passing at least part of a context of the
virtual machine to the callback function, wherein the
virtual machine evaluates the intermediate instructions
at runtime in view of the modified function table.

18. The computing device of claim 17, wherein the call-
back loader comprises machine-executable instructions
external to the virtual machine, invoked during initialization
of the virtual machine.

19. The computing device of claim 17, wherein the call-
back loader modifies the function table in response to an
operation of the virtual machine.

20. The computing device of claim 17, wherein the table of
references is modified to reference the callback function hav-
ing instructions to cause the virtual machine to evaluate cer-
tain intermediate instructions identified in the callback.

21. The computing device of claim 17, wherein the primi-
tive function is one of a method call, a method return, a
property read operation, a property write operation, or an
exception.

22. The computing device of claim 17, wherein the call-
back loader loads the callback into the virtual machine.

#* #* #* #* #*

